Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SynGuar: Guaranteeing Generalization in Programming by Example (2106.11610v1)

Published 22 Jun 2021 in cs.PL and cs.SE

Abstract: Programming by Example (PBE) is a program synthesis paradigm in which the synthesizer creates a program that matches a set of given examples. In many applications of such synthesis (e.g., program repair or reverse engineering), we are to reconstruct a program that is close to a specific target program, not merely to produce some program that satisfies the seen examples. In such settings, we wish that the synthesized program generalizes well, i.e., has as few errors as possible on the unobserved examples capturing the target function behavior. In this paper, we propose the first framework (called SynGuar) for PBE synthesizers that guarantees to achieve low generalization error with high probability. Our main contribution is a procedure to dynamically calculate how many additional examples suffice to theoretically guarantee generalization. We show how our techniques can be used in 2 well-known synthesis approaches: PROSE and STUN (synthesis through unification), for common string-manipulation program benchmarks. We find that often a few hundred examples suffice to provably bound generalization error below $5\%$ with high ($\geq 98\%$) probability on these benchmarks. Further, we confirm this empirically: SynGuar significantly improves the accuracy of existing synthesizers in generating the right target programs. But with fewer examples chosen arbitrarily, the same baseline synthesizers (without SynGuar) overfit and lose accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bo Wang (823 papers)
  2. Teodora Baluta (10 papers)
  3. Aashish Kolluri (11 papers)
  4. Prateek Saxena (32 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.