Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ConvDySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention and Convolutional Neural Networks (2106.11430v1)

Published 21 Jun 2021 in cs.LG

Abstract: Learning node representations on temporal graphs is a fundamental step to learn real-word dynamic graphs efficiently. Real-world graphs have the nature of continuously evolving over time, such as changing edges weights, removing and adding nodes and appearing and disappearing of edges, while previous graph representation learning methods focused generally on static graphs. We present ConvDySAT as an enhancement of DySAT, one of the state-of-the-art dynamic methods, by augmenting convolution neural networks with the self-attention mechanism, the employed method in DySAT to express the structural and temporal evolution. We conducted single-step link prediction on a communication network and rating network, Experimental results show significant performance gains for ConvDySAT over various state-of-the-art methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.