Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Model-based Hierarchical Reinforcement Learning using Inductive Logic Programming (2106.11417v1)

Published 21 Jun 2021 in cs.LG

Abstract: Recently deep reinforcement learning has achieved tremendous success in wide ranges of applications. However, it notoriously lacks data-efficiency and interpretability. Data-efficiency is important as interacting with the environment is expensive. Further, interpretability can increase the transparency of the black-box-style deep RL models and hence gain trust from the users. In this work, we propose a new hierarchical framework via symbolic RL, leveraging a symbolic transition model to improve the data-efficiency and introduce the interpretability for learned policy. This framework consists of a high-level agent, a subtask solver and a symbolic transition model. Without assuming any prior knowledge on the state transition, we adopt inductive logic programming (ILP) to learn the rules of symbolic state transitions, introducing interpretability and making the learned behavior understandable to users. In empirical experiments, we confirmed that the proposed framework offers approximately between 30\% to 40\% more data efficiency over previous methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.