Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-Temporal Multi-Task Learning Transformer for Joint Moving Object Detection and Segmentation (2106.11401v1)

Published 21 Jun 2021 in cs.CV and cs.LG

Abstract: Moving objects have special importance for Autonomous Driving tasks. Detecting moving objects can be posed as Moving Object Segmentation, by segmenting the object pixels, or Moving Object Detection, by generating a bounding box for the moving targets. In this paper, we present a Multi-Task Learning architecture, based on Transformers, to jointly perform both tasks through one network. Due to the importance of the motion features to the task, the whole setup is based on a Spatio-Temporal aggregation. We evaluate the performance of the individual tasks architecture versus the MTL setup, both with early shared encoders, and late shared encoder-decoder transformers. For the latter, we present a novel joint tasks query decoder transformer, that enables us to have tasks dedicated heads out of the shared model. To evaluate our approach, we use the KITTI MOD [29] data set. Results show1.5% mAP improvement for Moving Object Detection, and 2%IoU improvement for Moving Object Segmentation, over the individual tasks networks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.