Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Curricula and Emergent Implicit Signaling (2106.11156v3)

Published 21 Jun 2021 in cs.MA, cs.AI, and cs.LG

Abstract: Emergent communication has made strides towards learning communication from scratch, but has focused primarily on protocols that resemble human language. In nature, multi-agent cooperation gives rise to a wide range of communication that varies in structure and complexity. In this work, we recognize the full spectrum of communication that exists in nature and propose studying lower-level communication. Specifically, we study emergent implicit signaling in the context of decentralized multi-agent learning in difficult, sparse reward environments. However, learning to coordinate in such environments is challenging. We propose a curriculum-driven strategy that combines: (i) velocity-based environment shaping, tailored to the skill level of the multi-agent team; and (ii) a behavioral curriculum that helps agents learn successful single-agent behaviors as a precursor to learning multi-agent behaviors. Pursuit-evasion experiments show that our approach learns effective coordination, significantly outperforming sophisticated analytical and learned policies. Our method completes the pursuit-evasion task even when pursuers move at half of the evader's speed, whereas the highest-performing baseline fails at 80% of the evader's speed. Moreover, we examine the use of implicit signals in coordination through position-based social influence. We show that pursuers trained with our strategy exchange more than twice as much information (in bits) than baseline methods, indicating that our method has learned, and relies heavily on, the exchange of implicit signals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Niko A. Grupen (6 papers)
  2. Daniel D. Lee (44 papers)
  3. Bart Selman (33 papers)
Citations (6)