Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MSN: Efficient Online Mask Selection Network for Video Instance Segmentation (2106.10452v1)

Published 19 Jun 2021 in cs.CV and cs.LG

Abstract: In this work we present a novel solution for Video Instance Segmentation(VIS), that is automatically generating instance level segmentation masks along with object class and tracking them in a video. Our method improves the masks from segmentation and propagation branches in an online manner using the Mask Selection Network (MSN) hence limiting the noise accumulation during mask tracking. We propose an effective design of MSN by using patch-based convolutional neural network. The network is able to distinguish between very subtle differences between the masks and choose the better masks out of the associated masks accurately. Further, we make use of temporal consistency and process the video sequences in both forward and reverse manner as a post processing step to recover lost objects. The proposed method can be used to adapt any video object segmentation method for the task of VIS. Our method achieves a score of 49.1 mAP on 2021 YouTube-VIS Challenge and was ranked third place among more than 30 global teams. Our code will be available at https://github.com/SHI-Labs/Mask-Selection-Networks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.