Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global existence and asymptotic behavior for semilinear damped wave equations on measure spaces

Published 18 Jun 2021 in math.AP | (2106.10322v3)

Abstract: This paper is concerned with the semilinear damped wave equation on a measure space with a self-adjoint operator, instead of the standard Laplace operator. Under a certain decay estimate on the corresponding heat semigroup, we establish the linear estimates which generalize the so-called Matsumura estimates, and prove the small data global existence of solutions to the damped wave equation based on the linear estimates. Our approach is based on a direct spectral analysis analogous to the Fourier analysis. The self-adjoint operators treated in this paper include some important examples such as the Laplace operators on Euclidean spaces, the Dirichlet Laplacian on an arbitrary open set, the Robin Laplacian on an exterior domain, the Schr\"odinger operator, the elliptic operator, the Laplacian on Sierpinski gasket, and the fractional Laplacian.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.