Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network (2106.09996v2)

Published 18 Jun 2021 in cs.CV

Abstract: Training a Convolutional Neural Network (CNN) to be robust against rotation has mostly been done with data augmentation. In this paper, another progressive vision of research direction is highlighted to encourage less dependence on data augmentation by achieving structural rotational invariance of a network. The deep equivariance-bridged SO(2) invariant network is proposed to echo such vision. First, Self-Weighted Nearest Neighbors Graph Convolutional Network (SWN-GCN) is proposed to implement Graph Convolutional Network (GCN) on the graph representation of an image to acquire rotationally equivariant representation, as GCN is more suitable for constructing deeper network than spectral graph convolution-based approaches. Then, invariant representation is eventually obtained with Global Average Pooling (GAP), a permutation-invariant operation suitable for aggregating high-dimensional representations, over the equivariant set of vertices retrieved from SWN-GCN. Our method achieves the state-of-the-art image classification performance on rotated MNIST and CIFAR-10 images, where the models are trained with a non-augmented dataset only. Quantitative validations over invariance of the representations also demonstrate strong invariance of deep representations of SWN-GCN over rotations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sungwon Hwang (11 papers)
  2. Hyungtae Lim (35 papers)
  3. Hyun Myung (55 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.