Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Change Point Detection using optimisation approach and Bayesian statistics applied to real world applications (2106.09691v1)

Published 17 Jun 2021 in math.NA and cs.NA

Abstract: Change point detection becomes more and more important as datasets increase in size, where unsupervised detection algorithms can help users process data. To detect change points, a number of unsupervised algorithms have been developed which are based on different principles. One approach is to define an optimisation problem and minimise a cost function along with a penalty function. In the optimisation approach, the choice of the cost function affects the predictions made by the algorithm. In extension to the existing studies, a new type of cost function using Tikhonov regularisation is introduced. Another approach uses Bayesian statistics to calculate the posterior probability distribution of a specific point being a change point. It uses a priori knowledge on the distance between consecutive change points and a likelihood function with information about the segments. The optimisation and Bayesian approaches for offline change point detection are studied and applied to simulated datasets as well as a real world multi-phase dataset. The approaches have previously been studied separately and a novelty lies in comparing the predictions made by the two approaches in a specific setting, consisting of simulated datasets and a real world example. The study has found that the performance of the change point detection algorithms are affected by the features in the data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.