Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class Balancing GAN with a Classifier in the Loop (2106.09402v1)

Published 17 Jun 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Generative Adversarial Networks (GANs) have swiftly evolved to imitate increasingly complex image distributions. However, majority of the developments focus on performance of GANs on balanced datasets. We find that the existing GANs and their training regimes which work well on balanced datasets fail to be effective in case of imbalanced (i.e. long-tailed) datasets. In this work we introduce a novel theoretically motivated Class Balancing regularizer for training GANs. Our regularizer makes use of the knowledge from a pre-trained classifier to ensure balanced learning of all the classes in the dataset. This is achieved via modelling the effective class frequency based on the exponential forgetting observed in neural networks and encouraging the GAN to focus on underrepresented classes. We demonstrate the utility of our regularizer in learning representations for long-tailed distributions via achieving better performance than existing approaches over multiple datasets. Specifically, when applied to an unconditional GAN, it improves the FID from $13.03$ to $9.01$ on the long-tailed iNaturalist-$2019$ dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Harsh Rangwani (14 papers)
  2. Konda Reddy Mopuri (19 papers)
  3. R. Venkatesh Babu (108 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.