Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frustratingly Easy Transferability Estimation (2106.09362v4)

Published 17 Jun 2021 in cs.LG

Abstract: Transferability estimation has been an essential tool in selecting a pre-trained model and the layers in it for transfer learning, to transfer, so as to maximize the performance on a target task and prevent negative transfer. Existing estimation algorithms either require intensive training on target tasks or have difficulties in evaluating the transferability between layers. To this end, we propose a simple, efficient, and effective transferability measure named TransRate. Through a single pass over examples of a target task, TransRate measures the transferability as the mutual information between features of target examples extracted by a pre-trained model and their labels. We overcome the challenge of efficient mutual information estimation by resorting to coding rate that serves as an effective alternative to entropy. From the perspective of feature representation, the resulting TransRate evaluates both completeness (whether features contain sufficient information of a target task) and compactness (whether features of each class are compact enough for good generalization) of pre-trained features. Theoretically, we have analyzed the close connection of TransRate to the performance after transfer learning. Despite its extraordinary simplicity in 10 lines of codes, TransRate performs remarkably well in extensive evaluations on 32 pre-trained models and 16 downstream tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Long-Kai Huang (14 papers)
  2. Ying Wei (80 papers)
  3. Yu Rong (146 papers)
  4. Qiang Yang (202 papers)
  5. Junzhou Huang (137 papers)
Citations (53)

Summary

We haven't generated a summary for this paper yet.