Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smart Contract Vulnerability Detection: From Pure Neural Network to Interpretable Graph Feature and Expert Pattern Fusion (2106.09282v1)

Published 17 Jun 2021 in cs.LG and cs.PL

Abstract: Smart contracts hold digital coins worth billions of dollars, their security issues have drawn extensive attention in the past years. Towards smart contract vulnerability detection, conventional methods heavily rely on fixed expert rules, leading to low accuracy and poor scalability. Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge. In this paper, we explore combining deep learning with expert patterns in an explainable fashion. Specifically, we develop automatic tools to extract expert patterns from the source code. We then cast the code into a semantic graph to extract deep graph features. Thereafter, the global graph feature and local expert patterns are fused to cooperate and approach the final prediction, while yielding their interpretable weights. Experiments are conducted on all available smart contracts with source code in two platforms, Ethereum and VNT Chain. Empirically, our system significantly outperforms state-of-the-art methods. Our code is released.

Citations (91)

Summary

We haven't generated a summary for this paper yet.