Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On integral conditions for the existence of first integrals analytic saddle singularities (2106.09172v1)

Published 16 Jun 2021 in math.DS and math.CV

Abstract: We study one-parameter analytic integrable deformations of the germ of $2\times(n-2)$-type complex saddle singularity given by $d(xy)=0$ at the origin $0 \in \mathbb C2\times \mathbb C{n-2}$. Such a deformation writes ${\omega}t=d(xy) + \sum\limits_{j=1}\infty tj \omega_j$ where $t\in \mathbb C,0$ is the parameter of the deformation and the coefficients $\omega_j$ are holomorphic one-forms in some neighborhood of the origin $0\in \mathbb Cn$. We prove that, under a nondegeneracy condition of the singular set of the deformation, with respect to the fibration $d(xy)=0$, the existence of a holomorphic first integral for each element ${\omega}t$ of the deformation is equivalent to the vanishing of certain line integrals $\oint_{\gamma_c}{\omega}t=0, \forall \gamma_c, \forall t$ calculated on cycles $\gamma_c$ contained in the fibers $xy=c, \,0 \ne c \in \mathbb C,0$. This result is quite sharp regarding the conditions of the singular set and on the vanishing of the integrals in cycles. It is also not valid for ramified saddles, i.e., for deformations of saddles of the form $xnym=c$ where $n+m>2$. As an application of our techniques we obtain a criteria for the existence of first integrals for integrable codimension one deformations of quadratic analytic center-cylinder type singularities in terms of the vanishing of some easy to compute line integrals.

Summary

We haven't generated a summary for this paper yet.