Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the proper role of linguistically-oriented deep net analysis in linguistic theorizing (2106.08694v2)

Published 16 Jun 2021 in cs.CL

Abstract: A lively research field has recently emerged that uses experimental methods to probe the linguistic behavior of modern deep networks. While work in this tradition often reports intriguing results about the grammatical skills of deep nets, it is not clear what their implications for linguistic theorizing should be. As a consequence, linguistically-oriented deep net analysis has had very little impact on linguistics at large. In this chapter, I suggest that deep networks should be treated as theories making explicit predictions about the acceptability of linguistic utterances. I argue that, if we overcome some obstacles standing in the way of seriously pursuing this idea, we will gain a powerful new theoretical tool, complementary to mainstream algebraic approaches.

Citations (45)

Summary

We haven't generated a summary for this paper yet.