2000 character limit reached
Geometry of Prym semicanonical pencils and an application to cubic threefolds (2106.08683v2)
Published 16 Jun 2021 in math.AG
Abstract: In the moduli space $\mathcal{R}_g$ of double \'etale covers of curves of a fixed genus $g$, the locus formed by covers of curves with a semicanonical pencil consists of two irreducible divisors $\mathcal Te_g$ and $\mathcal To_g$. We study the Prym map on these divisors, which shows significant differences between them and has a rich geometry in the cases of low genus. In particular, the analysis of $\mathcal To_5$ has enumerative consequences for lines on cubic threefolds.
- Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.
- Triple lines on a cubic threefold, 2022. arXiv:2201.08884.
- Arnaud Beauville. Prym varieties and the Schottky problem. Invent. Math., 41(2):149–196, 1977.
- Arnaud Beauville. Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. (4), 10(3):309–391, 1977.
- Arnaud Beauville. Les singularités du diviseur ΘΘ\Thetaroman_Θ de la jacobienne intermédiaire de l’hypersurface cubique dans 𝐏4superscript𝐏4{\bf P}^{4}bold_P start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. In Algebraic threefolds (Varenna, 1981), volume 947 of Lecture Notes in Math., pages 190–208. Springer, Berlin-New York, 1982.
- The intermediate Jacobian of the cubic threefold. Ann. of Math. (2), 95:281–356, 1972.
- Sebastian Casalaina-Martin. Singularities of the Prym theta divisor. Ann. of Math. (2), 170(1):162–204, 2009.
- Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties. J. Eur. Math. Soc. (JEMS), 19(3):659–723, 2017. With an appendix by Mathieu Dutour Sikirić.
- Maurizio Cornalba. On the locus of curves with automorphisms. Ann. Mat. Pura Appl. (4), 149:135–151, 1987.
- On the class of Brill-Noether loci for Prym varieties. Math. Ann., 302(4):687–697, 1995.
- Olivier Debarre. Le lieu des variétés abéliennes dont le diviseur thêta est singulier a deux composantes. Ann. Sci. École Norm. Sup. (4), 25(6):687–707, 1992.
- Igor V. Dolgachev. Rationality of ℛ2subscriptℛ2\mathcal{R}_{2}caligraphic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ℛ3subscriptℛ3\mathcal{R}_{3}caligraphic_R start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Pure Appl. Math. Q., 4(2, Special Issue: In honor of Fedor Bogomolov. Part 1):501–508, 2008.
- Igor V. Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge, 2012. A modern view.
- Ron Donagi. The tetragonal construction. Bull. Amer. Math. Soc. (N.S.), 4(2):181–185, 1981.
- Ron Donagi. The fibers of the Prym map. In Curves, Jacobians, and abelian varieties (Amherst, MA, 1990), volume 136 of Contemp. Math., pages 55–125. Amer. Math. Soc., Providence, RI, 1992.
- The structure of the Prym map. Acta Math., 146(1-2):25–102, 1981.
- Irreducibility of some families of linear series with Brill-Noether number −11-1- 1. Ann. Sci. École Norm. Sup. (4), 22(1):33–53, 1989.
- Gavril Farkas. Prym varieties and their moduli. In Contributions to algebraic geometry, EMS Ser. Congr. Rep., pages 215–255. Eur. Math. Soc., Zürich, 2012.
- Singularities of theta divisors and the geometry of 𝒜5subscript𝒜5\mathcal{A}_{5}caligraphic_A start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT. J. Eur. Math. Soc. (JEMS), 16(9):1817–1848, 2014.
- The Kodaira dimension of the moduli space of Prym varieties. J. Eur. Math. Soc. (JEMS), 12(3):755–795, 2010.
- The fibers of the ramified Prym map, 2021. Appeared online in Commun. Contemp. Math. arXiv:2007.02068.
- Families of rationally connected varieties. J. Amer. Math. Soc., 16(1):57–67, 2003.
- The Prym map on divisors, and the slope of 𝒜5subscript𝒜5{\mathcal{A}}_{5}caligraphic_A start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT. Int. Math. Res. Not. IMRN, 2014(24):6645–6660, 2014. With an appendix by Klaus Hulek.
- Joe Harris. Theta-characteristics on algebraic curves. Trans. Amer. Math. Soc., 271(2):611–638, 1982.
- Andreas Hoering. Geometry of Brill-Noether loci on Prym varieties. Michigan Math. J., 61(4):785–806, 2012.
- E. Izadi. The geometric structure of 𝒜4subscript𝒜4{\mathcal{A}}_{4}caligraphic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, the structure of the Prym map, double solids and Γ00subscriptΓ00\Gamma_{00}roman_Γ start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT-divisors. J. Reine Angew. Math., 462:93–158, 1995.
- Theta-duality on Prym varieties and a Torelli theorem. Trans. Amer. Math. Soc., 365(10):5051–5069, 2013.
- G. Martens. Funktionen von vorgegebener Ordnung auf komplexen Kurven. J. Reine Angew. Math., 320:68–85, 1980.
- Generic Torelli theorem for Prym varieties of ramified coverings. Compos. Math., 148(4):1147–1170, 2012.
- The divisors of Prym semicanonical pencils, 2021. To appear in Int. Math. Res. Not. IMRN. arXiv:2103.01687.
- David Mumford. Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4), 4:181–192, 1971.
- David Mumford. Prym varieties. I. In Contributions to analysis (a collection of papers dedicated to Lipman Bers), pages 325–350. Academic Press, New York, 1974.
- David Mumford. On the Kodaira dimension of the Siegel modular variety. In Algebraic geometry—open problems (Ravello, 1982), volume 997 of Lecture Notes in Math., pages 348–375. Springer, Berlin, 1983.
- J. P. Murre. Algebraic equivalence modulo rational equivalence on a cubic threefold. Compositio Math., 25:161–206, 1972.
- Juan-Carlos Naranjo. The positive-dimensional fibres of the Prym map. Pacific J. Math., 172(1):223–226, 1996.
- Generic injectivity of the Prym map for double ramified coverings. Trans. Amer. Math. Soc., 371(5):3627–3646, 2019. With an appendix by Alessandro Verra.
- Global Prym-Torelli for double coverings ramified in at least 6 points, 2020. Appeared online in J. Algebraic Geom. arXiv:2005.11108.
- Sevin Recillas. Jacobians of curves with g41subscriptsuperscript𝑔14g^{1}_{4}italic_g start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT’s are the Prym’s of trigonal curves. Bol. Soc. Mat. Mexicana (2), 19(1):9–13, 1974.
- Xavier Roulleau. Fano surfaces with 12 or 30 elliptic curves. Michigan Math. J., 60(2):313–329, 2011.
- Montserrat Teixidor i Bigas. Half-canonical series on algebraic curves. Trans. Amer. Math. Soc., 302(1):99–115, 1987.
- Montserrat Teixidor i Bigas. The divisor of curves with a vanishing theta-null. Compos. Math., 66(1):15–22, 1988.
- Gerald E. Welters. A theorem of Gieseker-Petri type for Prym varieties. Ann. Sci. École Norm. Sup. (4), 18(4):671–683, 1985.