Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of Prym semicanonical pencils and an application to cubic threefolds (2106.08683v2)

Published 16 Jun 2021 in math.AG

Abstract: In the moduli space $\mathcal{R}_g$ of double \'etale covers of curves of a fixed genus $g$, the locus formed by covers of curves with a semicanonical pencil consists of two irreducible divisors $\mathcal Te_g$ and $\mathcal To_g$. We study the Prym map on these divisors, which shows significant differences between them and has a rich geometry in the cases of low genus. In particular, the analysis of $\mathcal To_5$ has enumerative consequences for lines on cubic threefolds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.
  2. Triple lines on a cubic threefold, 2022. arXiv:2201.08884.
  3. Arnaud Beauville. Prym varieties and the Schottky problem. Invent. Math., 41(2):149–196, 1977.
  4. Arnaud Beauville. Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. (4), 10(3):309–391, 1977.
  5. Arnaud Beauville. Les singularités du diviseur ΘΘ\Thetaroman_Θ de la jacobienne intermédiaire de l’hypersurface cubique dans 𝐏4superscript𝐏4{\bf P}^{4}bold_P start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. In Algebraic threefolds (Varenna, 1981), volume 947 of Lecture Notes in Math., pages 190–208. Springer, Berlin-New York, 1982.
  6. The intermediate Jacobian of the cubic threefold. Ann. of Math. (2), 95:281–356, 1972.
  7. Sebastian Casalaina-Martin. Singularities of the Prym theta divisor. Ann. of Math. (2), 170(1):162–204, 2009.
  8. Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties. J. Eur. Math. Soc. (JEMS), 19(3):659–723, 2017. With an appendix by Mathieu Dutour Sikirić.
  9. Maurizio Cornalba. On the locus of curves with automorphisms. Ann. Mat. Pura Appl. (4), 149:135–151, 1987.
  10. On the class of Brill-Noether loci for Prym varieties. Math. Ann., 302(4):687–697, 1995.
  11. Olivier Debarre. Le lieu des variétés abéliennes dont le diviseur thêta est singulier a deux composantes. Ann. Sci. École Norm. Sup. (4), 25(6):687–707, 1992.
  12. Igor V. Dolgachev. Rationality of ℛ2subscriptℛ2\mathcal{R}_{2}caligraphic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ℛ3subscriptℛ3\mathcal{R}_{3}caligraphic_R start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Pure Appl. Math. Q., 4(2, Special Issue: In honor of Fedor Bogomolov. Part 1):501–508, 2008.
  13. Igor V. Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge, 2012. A modern view.
  14. Ron Donagi. The tetragonal construction. Bull. Amer. Math. Soc. (N.S.), 4(2):181–185, 1981.
  15. Ron Donagi. The fibers of the Prym map. In Curves, Jacobians, and abelian varieties (Amherst, MA, 1990), volume 136 of Contemp. Math., pages 55–125. Amer. Math. Soc., Providence, RI, 1992.
  16. The structure of the Prym map. Acta Math., 146(1-2):25–102, 1981.
  17. Irreducibility of some families of linear series with Brill-Noether number −11-1- 1. Ann. Sci. École Norm. Sup. (4), 22(1):33–53, 1989.
  18. Gavril Farkas. Prym varieties and their moduli. In Contributions to algebraic geometry, EMS Ser. Congr. Rep., pages 215–255. Eur. Math. Soc., Zürich, 2012.
  19. Singularities of theta divisors and the geometry of 𝒜5subscript𝒜5\mathcal{A}_{5}caligraphic_A start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT. J. Eur. Math. Soc. (JEMS), 16(9):1817–1848, 2014.
  20. The Kodaira dimension of the moduli space of Prym varieties. J. Eur. Math. Soc. (JEMS), 12(3):755–795, 2010.
  21. The fibers of the ramified Prym map, 2021. Appeared online in Commun. Contemp. Math. arXiv:2007.02068.
  22. Families of rationally connected varieties. J. Amer. Math. Soc., 16(1):57–67, 2003.
  23. The Prym map on divisors, and the slope of 𝒜5subscript𝒜5{\mathcal{A}}_{5}caligraphic_A start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT. Int. Math. Res. Not. IMRN, 2014(24):6645–6660, 2014. With an appendix by Klaus Hulek.
  24. Joe Harris. Theta-characteristics on algebraic curves. Trans. Amer. Math. Soc., 271(2):611–638, 1982.
  25. Andreas Hoering. Geometry of Brill-Noether loci on Prym varieties. Michigan Math. J., 61(4):785–806, 2012.
  26. E. Izadi. The geometric structure of 𝒜4subscript𝒜4{\mathcal{A}}_{4}caligraphic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, the structure of the Prym map, double solids and Γ00subscriptΓ00\Gamma_{00}roman_Γ start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT-divisors. J. Reine Angew. Math., 462:93–158, 1995.
  27. Theta-duality on Prym varieties and a Torelli theorem. Trans. Amer. Math. Soc., 365(10):5051–5069, 2013.
  28. G. Martens. Funktionen von vorgegebener Ordnung auf komplexen Kurven. J. Reine Angew. Math., 320:68–85, 1980.
  29. Generic Torelli theorem for Prym varieties of ramified coverings. Compos. Math., 148(4):1147–1170, 2012.
  30. The divisors of Prym semicanonical pencils, 2021. To appear in Int. Math. Res. Not. IMRN. arXiv:2103.01687.
  31. David Mumford. Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4), 4:181–192, 1971.
  32. David Mumford. Prym varieties. I. In Contributions to analysis (a collection of papers dedicated to Lipman Bers), pages 325–350. Academic Press, New York, 1974.
  33. David Mumford. On the Kodaira dimension of the Siegel modular variety. In Algebraic geometry—open problems (Ravello, 1982), volume 997 of Lecture Notes in Math., pages 348–375. Springer, Berlin, 1983.
  34. J. P. Murre. Algebraic equivalence modulo rational equivalence on a cubic threefold. Compositio Math., 25:161–206, 1972.
  35. Juan-Carlos Naranjo. The positive-dimensional fibres of the Prym map. Pacific J. Math., 172(1):223–226, 1996.
  36. Generic injectivity of the Prym map for double ramified coverings. Trans. Amer. Math. Soc., 371(5):3627–3646, 2019. With an appendix by Alessandro Verra.
  37. Global Prym-Torelli for double coverings ramified in at least 6 points, 2020. Appeared online in J. Algebraic Geom. arXiv:2005.11108.
  38. Sevin Recillas. Jacobians of curves with g41subscriptsuperscript𝑔14g^{1}_{4}italic_g start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT’s are the Prym’s of trigonal curves. Bol. Soc. Mat. Mexicana (2), 19(1):9–13, 1974.
  39. Xavier Roulleau. Fano surfaces with 12 or 30 elliptic curves. Michigan Math. J., 60(2):313–329, 2011.
  40. Montserrat Teixidor i Bigas. Half-canonical series on algebraic curves. Trans. Amer. Math. Soc., 302(1):99–115, 1987.
  41. Montserrat Teixidor i Bigas. The divisor of curves with a vanishing theta-null. Compos. Math., 66(1):15–22, 1988.
  42. Gerald E. Welters. A theorem of Gieseker-Petri type for Prym varieties. Ann. Sci. École Norm. Sup. (4), 18(4):671–683, 1985.
Citations (3)

Summary

We haven't generated a summary for this paper yet.