Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sufficient conditions for 2-dimensional global rigidity (2106.08539v1)

Published 16 Jun 2021 in math.CO

Abstract: The 2-dimensional global rigidity has been shown to be equivalent to 3-connectedness and redundant rigidity by a combination of two results due to Jackson and Jord\'an, and Connelly, respectively. By the characterization, a theorem of Lov\'asz and Yemini implies that every $6$-connected graph is redundantly rigid, and thus globally rigid. The 6-connectedness is best possible, since there exist infinitely many 5-connected non-rigid graphs. Jackson, Servatius and Servatius used the idea of essential connectivity'' and proved that every 4-connectedessentially 6-connected'' graph is redundantly rigid and thus global rigid. Since 3-connectedness is a necessary condition of global rigidity, it is interesting to study 3-connected graphs for redundant rigidity and thus globally rigidity. We utilize a different ``essential connectivity'', and prove that every 3-connected essentially 9-connected graph is redundantly rigid and thus globally rigid. The essential 9-connectedness is best possible. Under this essential connectivity, we also prove that every 4-connected essentially 6-connected graph is redundantly rigid and thus global rigid. Our proofs are based on discharging arguments.

Summary

We haven't generated a summary for this paper yet.