Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DMSANet: Dual Multi Scale Attention Network (2106.08382v2)

Published 13 Jun 2021 in cs.CV and cs.LG

Abstract: Attention mechanism of late has been quite popular in the computer vision community. A lot of work has been done to improve the performance of the network, although almost always it results in increased computational complexity. In this paper, we propose a new attention module that not only achieves the best performance but also has lesser parameters compared to most existing models. Our attention module can easily be integrated with other convolutional neural networks because of its lightweight nature. The proposed network named Dual Multi Scale Attention Network (DMSANet) is comprised of two parts: the first part is used to extract features at various scales and aggregate them, the second part uses spatial and channel attention modules in parallel to adaptively integrate local features with their global dependencies. We benchmark our network performance for Image Classification on ImageNet dataset, Object Detection and Instance Segmentation both on MS COCO dataset.

Citations (17)

Summary

We haven't generated a summary for this paper yet.