2000 character limit reached
Incorporating Word Sense Disambiguation in Neural Language Models (2106.07967v3)
Published 15 Jun 2021 in cs.CL and cs.AI
Abstract: We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural LLMs (LMs). The training improves our models' performance for Word Sense Disambiguation (WSD) but also benefits general language understanding tasks while adding almost no parameters. We evaluate our techniques with seven different neural LMs and find that XLNet is more suitable for WSD than BERT. Our best-performing methods exceeds state-of-the-art WSD techniques on the SemCor 3.0 dataset by 0.5% F1 and increase BERT's performance on the GLUE benchmark by 1.1% on average.
- Jan Philip Wahle (31 papers)
- Terry Ruas (46 papers)
- Norman Meuschke (21 papers)
- Bela Gipp (98 papers)