Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voting for the right answer: Adversarial defense for speaker verification (2106.07868v2)

Published 15 Jun 2021 in cs.LG, cs.CR, cs.SD, and eess.AS

Abstract: Automatic speaker verification (ASV) is a well developed technology for biometric identification, and has been ubiquitous implemented in security-critic applications, such as banking and access control. However, previous works have shown that ASV is under the radar of adversarial attacks, which are very similar to their original counterparts from human's perception, yet will manipulate the ASV render wrong prediction. Due to the very late emergence of adversarial attacks for ASV, effective countermeasures against them are limited. Given that the security of ASV is of high priority, in this work, we propose the idea of "voting for the right answer" to prevent risky decisions of ASV in blind spot areas, by employing random sampling and voting. Experimental results show that our proposed method improves the robustness against both the limited-knowledge attackers by pulling the adversarial samples out of the blind spots, and the perfect-knowledge attackers by introducing randomness and increasing the attackers' budgets.

Citations (24)

Summary

We haven't generated a summary for this paper yet.