Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SemEval-2021 Task 11: NLPContributionGraph -- Structuring Scholarly NLP Contributions for a Research Knowledge Graph (2106.07385v3)

Published 10 Jun 2021 in cs.CL, cs.AI, cs.DL, cs.IR, and cs.LG

Abstract: There is currently a gap between the natural language expression of scholarly publications and their structured semantic content modeling to enable intelligent content search. With the volume of research growing exponentially every year, a search feature operating over semantically structured content is compelling. The SemEval-2021 Shared Task NLPContributionGraph (a.k.a. 'the NCG task') tasks participants to develop automated systems that structure contributions from NLP scholarly articles in the English language. Being the first-of-its-kind in the SemEval series, the task released structured data from NLP scholarly articles at three levels of information granularity, i.e. at sentence-level, phrase-level, and phrases organized as triples toward Knowledge Graph (KG) building. The sentence-level annotations comprised the few sentences about the article's contribution. The phrase-level annotations were scientific term and predicate phrases from the contribution sentences. Finally, the triples constituted the research overview KG. For the Shared Task, participating systems were then expected to automatically classify contribution sentences, extract scientific terms and relations from the sentences, and organize them as KG triples. Overall, the task drew a strong participation demographic of seven teams and 27 participants. The best end-to-end task system classified contribution sentences at 57.27% F1, phrases at 46.41% F1, and triples at 22.28% F1. While the absolute performance to generate triples remains low, in the conclusion of this article, the difficulty of producing such data and as a consequence of modeling it is highlighted.

Citations (29)

Summary

We haven't generated a summary for this paper yet.