Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random cones in high dimensions II: Weyl cones (2106.07244v1)

Published 14 Jun 2021 in math.PR and math.MG

Abstract: We consider two models of random cones together with their duals. Let $Y_1,\dots,Y_n$ be independent and identically distributed random vectors in $\mathbb Rd$ whose distribution satisfies some mild condition. The random cones $G_{n,d}A$ and $G_{n,d}B$ are defined as the positive hulls $\text{pos}{Y_1-Y_2,\dots,Y_{n-1}-Y_n}$, respectively $\text{pos}{Y_1-Y_2,\dots,Y_{n-1}-Y_n,Y_n}$, conditioned on the event that the respective positive hull is not equal to $\mathbb Rd$. We prove limit theorems for various expected geometric functionals of these random cones, as $n$ and $d$ tend to infinity in a coordinated way. This includes limit theorems for the expected number of $k$-faces and the $k$-th conic quermassintegrals, as $n$, $d$ and sometimes also $k$ tend to infinity simultaneously. Moreover, we uncover a phase transition in high dimensions for the expected statistical dimension for both models of random cones.

Summary

We haven't generated a summary for this paper yet.