Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Neural Architecture Search with Morphism-based Transformable Backbone Architectures (2106.07211v1)

Published 14 Jun 2021 in cs.AI

Abstract: This study aims at making the architecture search process more adaptive for one-shot or online training. It is extended from the existing study on differentiable neural architecture search, and we made the backbone architecture transformable rather than fixed during the training process. As is known, differentiable neural architecture search (DARTS) requires a pre-defined over-parameterized backbone architecture, while its size is to be determined manually. Also, in DARTS backbone, Hadamard product of two elements is not introduced, which exists in both LSTM and GRU cells for recurrent nets. This study introduces a growing mechanism for differentiable neural architecture search based on network morphism. It enables growing of the cell structures from small size towards large size ones with one-shot training. Two modes can be applied in integrating the growing and original pruning process. We also implement a recently proposed two-input backbone architecture for recurrent neural networks. Initial experimental results indicate that our approach and the two-input backbone structure can be quite effective compared with other baseline architectures including LSTM, in a variety of learning tasks including multi-variate time series forecasting and LLMing. On the other hand, we find that dynamic network transformation is promising in improving the efficiency of differentiable architecture search.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Renlong Jie (8 papers)
  2. Junbin Gao (111 papers)

Summary

We haven't generated a summary for this paper yet.