Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relationships Between Hyperelliptic Functions of Genus 2 and Elliptic Functions (2106.06764v3)

Published 12 Jun 2021 in math.AG and math.CV

Abstract: The article is devoted to the classical problems about the relationships between elliptic functions and hyperelliptic functions of genus 2. It contains new results, as well as a derivation from them of well-known results on these issues. Our research was motivated by applications to the theory of equations and dynamical systems integrable in hyperelliptic functions of genus 2. We consider a hyperelliptic curve $V$ of genus 2 which admits a morphism of degree 2 to an elliptic curve. Then there exist two elliptic curves $E_i$, $i=1,2$, and morphisms of degree 2 from $V$ to $E_i$. We construct hyperelliptic functions associated with $V$ from the Weierstrass elliptic functions associated with $E_i$ and describe them in terms of the fundamental hyperelliptic functions defined by the logarithmic derivatives of the two-dimensional sigma functions. We show that the restrictions of hyperelliptic functions associated with $V$ to the appropriate subspaces in $\mathbb{C}2$ are elliptic functions and describe them in terms of the Weierstrass elliptic functions associated with $E_i$. Further, we express the hyperelliptic functions associated with $V$ on $\mathbb{C}2$ in terms of the Weierstrass elliptic functions associated with $E_i$. We derive these results by describing the homomorphisms between the Jacobian varieties of the curves $V$ and $E_i$ induced by the morphisms from $V$ to $E_i$ explicitly.

Summary

We haven't generated a summary for this paper yet.