Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Aspects of the Numerical Analysis of a Fractional Duffing Oscillator with a Fractional Variable Order Derivative of the Riemann-Liouville Type (2106.06708v1)

Published 12 Jun 2021 in math.NA, cs.NA, math.DS, and nlin.CD

Abstract: In this paper, we consider some aspects of the numerical analysis of the mathematical model of fractional Duffing with a derivative of variable fractional order of the Riemann-Liouville type. Using numerical methods: an explicit finite-difference scheme based on the Grunwald-Letnikov and Adams-Bashford-Moulton approximations (predictor-corrector), the proposed numerical model is found. These methods have been verified with a test case. It is shown that the predictor-corrector method has a faster convergence than the method according to the explicit finite-difference scheme. For these schemes, using Runge's rule, estimates of the computational accuracy were made, which tended to unity with an increase in the number of calculated grid nodes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.