Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certifying the LTL Formula p Until q in Hybrid Systems (2106.06455v5)

Published 11 Jun 2021 in eess.SY and cs.SY

Abstract: In this paper, we propose sufficient conditions to guarantee that a linear temporal logic (LTL) formula of the form p Until q, denoted by $p \mathcal{U} q$, is satisfied for a hybrid system. Roughly speaking, the formula $p \mathcal{U} q$ is satisfied means that the solutions, initially satisfying proposition p, keep satisfying this proposition until proposition q is satisfied. To certify such a formula, connections to invariance notions such as conditional invariance (CI) and eventual conditional invariance (ECI), as well as finite-time attractivity (FTA) are established. As a result, sufficient conditions involving the data of the hybrid system and an appropriate choice of Lyapunov-like functions, such as barrier functions, are derived. The considered hybrid system is given in terms of differential and difference inclusions, which capture the continuous and the discrete dynamics present in the same system, respectively. Examples illustrate the results throughout the paper.

Citations (4)

Summary

We haven't generated a summary for this paper yet.