Papers
Topics
Authors
Recent
Search
2000 character limit reached

Conformal Bayesian Computation

Published 11 Jun 2021 in stat.ME and stat.CO | (2106.06137v2)

Abstract: We develop scalable methods for producing conformal Bayesian predictive intervals with finite sample calibration guarantees. Bayesian posterior predictive distributions, $p(y \mid x)$, characterize subjective beliefs on outcomes of interest, $y$, conditional on predictors, $x$. Bayesian prediction is well-calibrated when the model is true, but the predictive intervals may exhibit poor empirical coverage when the model is misspecified, under the so called ${\cal{M}}$-open perspective. In contrast, conformal inference provides finite sample frequentist guarantees on predictive confidence intervals without the requirement of model fidelity. Using 'add-one-in' importance sampling, we show that conformal Bayesian predictive intervals are efficiently obtained from re-weighted posterior samples of model parameters. Our approach contrasts with existing conformal methods that require expensive refitting of models or data-splitting to achieve computational efficiency. We demonstrate the utility on a range of examples including extensions to partially exchangeable settings such as hierarchical models.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.