Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simplifying Continuous-Time Quantum Walks on Dynamic Graphs (2106.06015v2)

Published 10 Jun 2021 in quant-ph and math.CO

Abstract: A continuous-time quantum walk on a dynamic graph evolves by Schr\"odinger's equation with a sequence of Hamiltonians encoding the edges of the graph. This process is universal for quantum computing, but in general, the dynamic graph that implements a quantum circuit can be quite complicated. In this paper, we give six scenarios under which a dynamic graph can be simplified, and they exploit commuting graphs, identical graphs, perfect state transfer, complementary graphs, isolated vertices, and uniform mixing on the hypercube. As examples, we simplify dynamic graphs, in some instances allowing single-qubit gates to be implemented in parallel.

Citations (6)

Summary

We haven't generated a summary for this paper yet.