Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid gene selection approach using XGBoost and multi-objective genetic algorithm for cancer classification (2106.05841v1)

Published 30 May 2021 in cs.LG

Abstract: Microarray gene expression data are often accompanied by a large number of genes and a small number of samples. However, only a few of these genes are relevant to cancer, resulting in signigicant gene selection challenges. Hence, we propose a two-stage gene selection approach by combining extreme gradient boosting (XGBoost) and a multi-objective optimization genetic algorithm (XGBoost-MOGA) for cancer classification in microarray datasets. In the first stage, the genes are ranked use an ensemble-based feature selection using XGBoost. This stage can effectively remove irrelevant genes and yield a group comprising the most relevant genes related to the class. In the second stage, XGBoost-MOGA searches for an optimal gene subset based on the most relevant genes's group using a multi-objective optimization genetic algorithm. We performed comprehensive experiments to compare XGBoost-MOGA with other state-of-the-art feature selection methods using two well-known learning classifiers on 13 publicly available microarray expression datasets. The experimental results show that XGBoost-MOGA yields significantly better results than previous state-of-the-art algorithms in terms of various evaluation criteria, such as accuracy, F-score, precision, and recall.

Citations (83)

Summary

We haven't generated a summary for this paper yet.