Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Fokker-Planck Dynamics (2106.05718v3)

Published 10 Jun 2021 in math.OA, math-ph, math.MP, and quant-ph

Abstract: The Fokker-Planck equation is a partial differential equation which is a key ingredient in many models in physics. This paper aims to obtain a quantum counterpart of Fokker-Planck dynamics, as a means to describing quantum Fokker-Planck dynamics. Given that relevant models relate to the description of large systems, the quantization of the Fokker-Planck equation should be done in a manner that respects this fact, and is therefore carried out within the setting of non-commutative analysis based on general von Neumann algebras. Within this framework we present a quantization of the generalized Laplace operator, and then go on to incorporate a potential term conditioned to noncommutative analysis. In closing we then construct and examine the asymptotic behaviour of the corresponding Markov semigroups. We also present a noncommutative Csiszar-Kullback inequality formulated in terms of a notion of relative entropy, and show that for more general systems, good behaviour with respect to this notion of entropy ensures similar asymptotic behaviour of the relevant dynamics.

Summary

We haven't generated a summary for this paper yet.