Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence in Causal Discovery with Linear Causal Models (2106.05694v1)

Published 10 Jun 2021 in math.ST, stat.ME, and stat.TH

Abstract: Structural causal models postulate noisy functional relations among a set of interacting variables. The causal structure underlying each such model is naturally represented by a directed graph whose edges indicate for each variable which other variables it causally depends upon. Under a number of different model assumptions, it has been shown that this causal graph and, thus also, causal effects are identifiable from mere observational data. For these models, practical algorithms have been devised to learn the graph. Moreover, when the graph is known, standard techniques may be used to give estimates and confidence intervals for causal effects. We argue, however, that a two-step method that first learns a graph and then treats the graph as known yields confidence intervals that are overly optimistic and can drastically fail to account for the uncertain causal structure. To address this issue we lay out a framework based on test inversion that allows us to give confidence regions for total causal effects that capture both sources of uncertainty: causal structure and numerical size of nonzero effects. Our ideas are developed in the context of bivariate linear causal models with homoscedastic errors, but as we exemplify they are generalizable to larger systems as well as other settings such as, in particular, linear non-Gaussian models.

Summary

We haven't generated a summary for this paper yet.