Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Spherical- and Planar-Wave Channel Modeling and DCNN-powered Estimation for Terahertz Ultra-massive MIMO Systems (2106.05491v1)

Published 10 Jun 2021 in cs.IT, eess.SP, and math.IT

Abstract: The Terahertz band is envisioned to meet the demanding 100 Gbps data rates for 6G wireless communications. Aiming at combating the distance limitation problem with low hardware-cost, ultra-massive MIMO with hybrid beamforming is promising. However, relationships among wavelength, array size and antenna spacing give rise to the inaccuracy of planar-wave channel model (PWM), while an enlarged channel matrix dimension leads to excessive parameters of applying spherical-wave channel model (SWM). Moreover, due to the adoption of hybrid beamforming, channel estimation (CE) needs to recover high-dimensional channels from severely compressed channel observation. In this paper, a hybrid spherical- and planar-wave channel model (HSPM) is investigated and proved to be accurate and efficient by adopting PWM within subarray and SWM among subarray. Furthermore, a two-phase HSPM CE mechanism is developed. A deep convolutional-neural-network (DCNN) is designed in the first phase for parameter estimation of reference subarrays, while geometric relationships of the remaining channel parameters between reference subarrays are leveraged to complete CE in the second phase. Extensive numerical results demonstrate the HSPM is accurate at various communication distances, array sizes and carrier frequencies.The DCNN converges fast and achieves high accuracy with 5.2 dB improved normalized-mean-square-error compared to literature methods, and owns substantially low complexity.

Citations (4)

Summary

We haven't generated a summary for this paper yet.