Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature and Parameter Selection in Stochastic Linear Bandits (2106.05378v3)

Published 9 Jun 2021 in cs.LG

Abstract: We study two model selection settings in stochastic linear bandits (LB). In the first setting, which we refer to as feature selection, the expected reward of the LB problem is in the linear span of at least one of $M$ feature maps (models). In the second setting, the reward parameter of the LB problem is arbitrarily selected from $M$ models represented as (possibly) overlapping balls in $\mathbb Rd$. However, the agent only has access to misspecified models, i.e.,~estimates of the centers and radii of the balls. We refer to this setting as parameter selection. For each setting, we develop and analyze a computationally efficient algorithm that is based on a reduction from bandits to full-information problems. This allows us to obtain regret bounds that are not worse (up to a $\sqrt{\log M}$ factor) than the case where the true model is known. This is the best-reported dependence on the number of models $M$ in these settings. Finally, we empirically show the effectiveness of our algorithms using synthetic and real-world experiments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.