Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automating Induction by Reflection

Published 9 Jun 2021 in cs.LO | (2106.05066v1)

Abstract: Despite recent advances in automating theorem proving in full first-order theories, inductive reasoning still poses a serious challenge to state-of-the-art theorem provers. The reason for that is that in first-order logic induction requires an infinite number of axioms, which is not a feasible input to a computer-aided theorem prover requiring a finite input. Mathematical practice is to specify these infinite sets of axioms as axiom schemes. Unfortunately these schematic definitions cannot be formalized in first-order logic, and therefore not supported as inputs for first-order theorem provers. In this work we introduce a new method, inspired by the field of axiomatic theories of truth, that allows to express schematic inductive definitions, in the standard syntax of multi-sorted first-order logic. Further we test the practical feasibility of the method with state-of-the-art theorem provers, comparing it to solvers' native techniques for handling induction. This paper is an extended version of the LFMTP 21 submission with the same title.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.