Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Computational Ghost Imaging using Unpaired Deep Learning and a Constrained Generative Adversarial Network (2106.04822v1)

Published 9 Jun 2021 in eess.IV and cs.CV

Abstract: The unpaired training can be the only option available for fast deep learning-based ghost imaging, where obtaining a high signal-to-noise ratio (SNR) image copy of each low SNR ghost image could be practically time-consuming and challenging. This paper explores the capabilities of deep learning to leverage computational ghost imaging when there is a lack of paired training images. The deep learning approach proposed here enables fast ghost imaging through reconstruction of high SNR images from faint and hastily shot ghost images using a constrained Wasserstein generative adversarial network. In the proposed approach, the objective function is regularized to enforce the generation of faithful and relevant high SNR images to the ghost copies. This regularization measures the distance between reconstructed images and the faint ghost images in a low-noise manifold generated by a shadow network. The performance of the constrained network is shown to be particularly important for ghost images with low SNR. The proposed pipeline is able to reconstruct high-quality images from the ghost images with SNR values not necessarily equal to the SNR of the training set.

Summary

We haven't generated a summary for this paper yet.