Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonasymptotic theory for two-layer neural networks: Beyond the bias-variance trade-off (2106.04795v2)

Published 9 Jun 2021 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Large neural networks have proved remarkably effective in modern deep learning practice, even in the overparametrized regime where the number of active parameters is large relative to the sample size. This contradicts the classical perspective that a machine learning model must trade off bias and variance for optimal generalization. To resolve this conflict, we present a nonasymptotic generalization theory for two-layer neural networks with ReLU activation function by incorporating scaled variation regularization. Interestingly, the regularizer is equivalent to ridge regression from the angle of gradient-based optimization, but plays a similar role to the group lasso in controlling the model complexity. By exploiting this "ridge-lasso duality," we obtain new prediction bounds for all network widths, which reproduce the double descent phenomenon. Moreover, the overparametrized minimum risk is lower than its underparametrized counterpart when the signal is strong, and is nearly minimax optimal over a suitable class of functions. By contrast, we show that overparametrized random feature models suffer from the curse of dimensionality and thus are suboptimal.

Citations (3)

Summary

We haven't generated a summary for this paper yet.