Papers
Topics
Authors
Recent
2000 character limit reached

Nonasymptotic theory for two-layer neural networks: Beyond the bias-variance trade-off

Published 9 Jun 2021 in cs.LG, math.ST, stat.ML, and stat.TH | (2106.04795v2)

Abstract: Large neural networks have proved remarkably effective in modern deep learning practice, even in the overparametrized regime where the number of active parameters is large relative to the sample size. This contradicts the classical perspective that a machine learning model must trade off bias and variance for optimal generalization. To resolve this conflict, we present a nonasymptotic generalization theory for two-layer neural networks with ReLU activation function by incorporating scaled variation regularization. Interestingly, the regularizer is equivalent to ridge regression from the angle of gradient-based optimization, but plays a similar role to the group lasso in controlling the model complexity. By exploiting this "ridge-lasso duality," we obtain new prediction bounds for all network widths, which reproduce the double descent phenomenon. Moreover, the overparametrized minimum risk is lower than its underparametrized counterpart when the signal is strong, and is nearly minimax optimal over a suitable class of functions. By contrast, we show that overparametrized random feature models suffer from the curse of dimensionality and thus are suboptimal.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.