Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal Health Event Prediction (2106.04751v2)

Published 9 Jun 2021 in cs.LG and cs.AI

Abstract: Electronic Health Records (EHR) have been heavily used in modern healthcare systems for recording patients' admission information to hospitals. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, or diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for existing works to simultaneously provide generic and personalized interpretability. To address these challenges, we first propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure. We incorporate these pre-trained representations into a graph neural network to detect disease complications, and design a multi-level attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments and case studies on widely used publicly available EHR datasets to verify the effectiveness of our model. The results demonstrate our model's strengths in both predictive tasks and interpretable abilities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chang Lu (18 papers)
  2. Chandan K. Reddy (64 papers)
  3. Yue Ning (24 papers)
Citations (21)