Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Multiple Noisy Partial Labelers (2106.04530v2)

Published 8 Jun 2021 in cs.LG and stat.ML

Abstract: Programmatic weak supervision creates models without hand-labeled training data by combining the outputs of heuristic labelers. Existing frameworks make the restrictive assumption that labelers output a single class label. Enabling users to create partial labelers that output subsets of possible class labels would greatly expand the expressivity of programmatic weak supervision. We introduce this capability by defining a probabilistic generative model that can estimate the underlying accuracies of multiple noisy partial labelers without ground truth labels. We show how to scale up learning, for example learning on 100k examples in one minute, a 300x speed up compared to a naive implementation. We also prove that this class of models is generically identifiable up to label swapping under mild conditions. We evaluate our framework on three text classification and six object classification tasks. On text tasks, adding partial labels increases average accuracy by 8.6 percentage points. On image tasks, we show that partial labels allow us to approach some zero-shot object classification problems with programmatic weak supervision by using class attributes as partial labelers. On these tasks, our framework has accuracy comparable to recent embedding-based zero-shot learning methods, while using only pre-trained attribute detectors.

Citations (21)

Summary

We haven't generated a summary for this paper yet.