Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Staircase Attention for Recurrent Processing of Sequences (2106.04279v1)

Published 8 Jun 2021 in cs.LG and cs.CL

Abstract: Attention mechanisms have become a standard tool for sequence modeling tasks, in particular by stacking self-attention layers over the entire input sequence as in the Transformer architecture. In this work we introduce a novel attention procedure called staircase attention that, unlike self-attention, operates across the sequence (in time) recurrently processing the input by adding another step of processing. A step in the staircase comprises of backward tokens (encoding the sequence so far seen) and forward tokens (ingesting a new part of the sequence), or an extreme Ladder version with a forward step of zero that simply repeats the Transformer on each step of the ladder, sharing the weights. We thus describe a family of such models that can trade off performance and compute, by either increasing the amount of recurrence through time, the amount of sequential processing via recurrence in depth, or both. Staircase attention is shown to be able to solve tasks that involve tracking that conventional Transformers cannot, due to this recurrence. Further, it is shown to provide improved modeling power for the same size model (number of parameters) compared to self-attentive Transformers on LLMing and dialogue tasks, yielding significant perplexity gains.

Citations (11)

Summary

We haven't generated a summary for this paper yet.