Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition (2106.04117v2)

Published 8 Jun 2021 in cs.LG

Abstract: We consider the best-of-both-worlds problem for learning an episodic Markov Decision Process through $T$ episodes, with the goal of achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ regret when the losses are adversarial and simultaneously $\mathcal{O}(\text{polylog}(T))$ regret when the losses are (almost) stochastic. Recent work by [Jin and Luo, 2020] achieves this goal when the fixed transition is known, and leaves the case of unknown transition as a major open question. In this work, we resolve this open problem by using the same Follow-the-Regularized-Leader ($\text{FTRL}$) framework together with a set of new techniques. Specifically, we first propose a loss-shifting trick in the $\text{FTRL}$ analysis, which greatly simplifies the approach of [Jin and Luo, 2020] and already improves their results for the known transition case. Then, we extend this idea to the unknown transition case and develop a novel analysis which upper bounds the transition estimation error by (a fraction of) the regret itself in the stochastic setting, a key property to ensure $\mathcal{O}(\text{polylog}(T))$ regret.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tiancheng Jin (9 papers)
  2. Longbo Huang (89 papers)
  3. Haipeng Luo (99 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.