Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Abstractive Unsupervised Summarization of Online News Discussions (2106.03953v2)

Published 7 Jun 2021 in cs.CL and cs.LG

Abstract: Summarization has usually relied on gold standard summaries to train extractive or abstractive models. Social media brings a hurdle to summarization techniques since it requires addressing a multi-document multi-author approach. We address this challenging task by introducing a novel method that generates abstractive summaries of online news discussions. Our method extends a BERT-based architecture, including an attention encoding that fed comments' likes during the training stage. To train our model, we define a task which consists of reconstructing high impact comments based on popularity (likes). Accordingly, our model learns to summarize online discussions based on their most relevant comments. Our novel approach provides a summary that represents the most relevant aspects of a news item that users comment on, incorporating the social context as a source of information to summarize texts in online social networks. Our model is evaluated using ROUGE scores between the generated summary and each comment on the thread. Our model, including the social attention encoding, significantly outperforms both extractive and abstractive summarization methods based on such evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ignacio Tampe Palma (1 paper)
  2. Marcelo Mendoza (16 papers)
  3. Evangelos Milios (17 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.