Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning without Knowing: Unobserved Context in Continuous Transfer Reinforcement Learning (2106.03833v1)

Published 7 Jun 2021 in cs.LG and cs.AI

Abstract: In this paper, we consider a transfer Reinforcement Learning (RL) problem in continuous state and action spaces, under unobserved contextual information. For example, the context can represent the mental view of the world that an expert agent has formed through past interactions with this world. We assume that this context is not accessible to a learner agent who can only observe the expert data. Then, our goal is to use the context-aware expert data to learn an optimal context-unaware policy for the learner using only a few new data samples. Such problems are typically solved using imitation learning that assumes that both the expert and learner agents have access to the same information. However, if the learner does not know the expert context, using the expert data alone will result in a biased learner policy and will require many new data samples to improve. To address this challenge, in this paper, we formulate the learning problem as a causal bound-constrained Multi-Armed-Bandit (MAB) problem. The arms of this MAB correspond to a set of basis policy functions that can be initialized in an unsupervised way using the expert data and represent the different expert behaviors affected by the unobserved context. On the other hand, the MAB constraints correspond to causal bounds on the accumulated rewards of these basis policy functions that we also compute from the expert data. The solution to this MAB allows the learner agent to select the best basis policy and improve it online. And the use of causal bounds reduces the exploration variance and, therefore, improves the learning rate. We provide numerical experiments on an autonomous driving example that show that our proposed transfer RL method improves the learner's policy faster compared to existing imitation learning methods and enjoys much lower variance during training.

Citations (4)

Summary

We haven't generated a summary for this paper yet.