Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frustratingly Easy Uncertainty Estimation for Distribution Shift (2106.03762v2)

Published 7 Jun 2021 in stat.ML and cs.LG

Abstract: Distribution shift is an important concern in deep image classification, produced either by corruption of the source images, or a complete change, with the solution involving domain adaptation. While the primary goal is to improve accuracy under distribution shift, an important secondary goal is uncertainty estimation: evaluating the probability that the prediction of a model is correct. While improving accuracy is hard, uncertainty estimation turns out to be frustratingly easy. Prior works have appended uncertainty estimation into the model and training paradigm in various ways. Instead, we show that we can estimate uncertainty by simply exposing the original model to corrupted images, and performing simple statistical calibration on the image outputs. Our frustratingly easy methods demonstrate superior performance on a wide range of distribution shifts as well as on unsupervised domain adaptation tasks, measured through extensive experimentation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.