Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FairCal: Fairness Calibration for Face Verification (2106.03761v4)

Published 7 Jun 2021 in cs.CV, cs.LG, and stat.ML

Abstract: Despite being widely used, face recognition models suffer from bias: the probability of a false positive (incorrect face match) strongly depends on sensitive attributes such as the ethnicity of the face. As a result, these models can disproportionately and negatively impact minority groups, particularly when used by law enforcement. The majority of bias reduction methods have several drawbacks: they use an end-to-end retraining approach, may not be feasible due to privacy issues, and often reduce accuracy. An alternative approach is post-processing methods that build fairer decision classifiers using the features of pre-trained models, thus avoiding the cost of retraining. However, they still have drawbacks: they reduce accuracy (AGENDA, PASS, FTC), or require retuning for different false positive rates (FSN). In this work, we introduce the Fairness Calibration (FairCal) method, a post-training approach that simultaneously: (i) increases model accuracy (improving the state-of-the-art), (ii) produces fairly-calibrated probabilities, (iii) significantly reduces the gap in the false positive rates, (iv) does not require knowledge of the sensitive attribute, and (v) does not require retraining, training an additional model, or retuning. We apply it to the task of Face Verification, and obtain state-of-the-art results with all the above advantages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tiago Salvador (11 papers)
  2. Stephanie Cairns (2 papers)
  3. Vikram Voleti (25 papers)
  4. Noah Marshall (4 papers)
  5. Adam Oberman (23 papers)
Citations (13)