Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Inference for Cox Proportional Hazards Models with a Diverging Number of Covariates (2106.03244v1)

Published 6 Jun 2021 in stat.ME

Abstract: For statistical inference on regression models with a diverging number of covariates, the existing literature typically makes sparsity assumptions on the inverse of the Fisher information matrix. Such assumptions, however, are often violated under Cox proportion hazards models, leading to biased estimates with under-coverage confidence intervals. We propose a modified debiased lasso approach, which solves a series of quadratic programming problems to approximate the inverse information matrix without posing sparse matrix assumptions. We establish asymptotic results for the estimated regression coefficients when the dimension of covariates diverges with the sample size. As demonstrated by extensive simulations, our proposed method provides consistent estimates and confidence intervals with nominal coverage probabilities. The utility of the method is further demonstrated by assessing the effects of genetic markers on patients' overall survival with the Boston Lung Cancer Survival Cohort, a large-scale epidemiology study investigating mechanisms underlying the lung cancer.

Citations (5)

Summary

We haven't generated a summary for this paper yet.