Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on Tensor Shape Faults in Deep Learning Systems (2106.02887v1)

Published 5 Jun 2021 in cs.SE

Abstract: Software developers frequently adopt deep learning (DL) libraries to incorporate learning solutions into software systems. However, misuses of these libraries can cause various DL faults. Among them, tensor shape faults are most prevalent. Tensor shape faults occur when restriction conditions of operations are not met, leading to many system crashes. To support efficient detection and fixing of these faults, we conduct an empirical study to obtain a deep insight. We construct SFData, a set of 146 buggy programs with crashing tensor shape faults (i.e., those causing programs to crash). By analyzing the faults in SFData, we categorize them into four types and get some valuable observations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.