Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconditionally energy stable and first-order accurate numerical schemes for the heat equation with uncertain temperature-dependent conductivity (2106.02754v1)

Published 4 Jun 2021 in math.NA and cs.NA

Abstract: In this paper, we present first-order accurate numerical methods for solution of the heat equation with uncertain temperature-dependent thermal conductivity. Each algorithm yields a shared coefficient matrix for the ensemble set improving computational efficiency. Both mixed and Robin-type boundary conditions are treated. In contrast with alternative, related methodologies, stability and convergence are unconditional. In particular, we prove unconditional, energy stability and optimal-order error estimates. A battery of numerical tests are presented to illustrate both the theory and application of these algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.