Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Dynamical Frequencies from Invariants of Motion in Finite-Dimensional Nonlinear Integrable Systems (2106.02625v2)

Published 4 Jun 2021 in physics.acc-ph, math-ph, math.MP, and nlin.SI

Abstract: Integrable dynamical systems play an important role in many areas of science, including accelerator and plasma physics. An integrable dynamical system with $n$ degrees of freedom (DOF) possesses $n$ nontrivial integrals of motion, and can be solved, in principle, by covering the phase space with one or more charts in which the dynamics can be described using action-angle coordinates. To obtain the frequencies of motion, both the transformation to action-angle coordinates and its inverse must be known in explicit form. However, no general algorithm exists for constructing this transformation explicitly from a set of $n$ known (and generally coupled) integrals of motion. In this paper we describe how one can determine the dynamical frequencies of the motion as functions of these $n$ integrals in the absence of explicitly-known action-angle variables, and we provide several examples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.