Papers
Topics
Authors
Recent
Search
2000 character limit reached

Flux recovery for Cut finite element method and its application in a posteriori error estimation

Published 4 Jun 2021 in math.NA and cs.NA | (2106.02547v1)

Abstract: In this article, we aim to recover locally conservative and $H(div)$ conforming fluxes for the linear Cut Finite Element Solution with Nitsche's method for Poisson problems with Dirichlet boundary condition. The computation of the conservative flux in the Raviart-Thomas space is completely local and does not require to solve any mixed problem. The $L2$-norm of the difference between the numerical flux and the recovered flux can then be used as a posteriori error estimator in the adaptive mesh refinement procedure. Theoretically we are able to prove the global reliability and local efficiency. The theoretical results are verified in the numerical results. Moreover, in the numerical results we also observe optimal convergence rate for the flux error.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.