Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Hypergraph Sparsifiers of Nearly Linear Size (2106.02353v1)

Published 4 Jun 2021 in cs.DS

Abstract: Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on the sparsifier size are not known, mainly because the hypergraph Laplacian is non-linear, and thus lacks the linear-algebraic structure and tools that have been so effective for graphs. Our main contribution is the first algorithm for constructing $\epsilon$-spectral sparsifiers for hypergraphs with $O*(n)$ hyperedges, where $O*$ suppresses $(\epsilon{-1} \log n){O(1)}$ factors. This bound is independent of the rank $r$ (maximum cardinality of a hyperedge), and is essentially best possible due to a recent bit complexity lower bound of $\Omega(nr)$ for hypergraph sparsification. This result is obtained by introducing two new tools. First, we give a new proof of spectral concentration bounds for sparsifiers of graphs; it avoids linear-algebraic methods, replacing e.g.~the usual application of the matrix Bernstein inequality and therefore applies to the (non-linear) hypergraph setting. To achieve the result, we design a new sequence of hypergraph-dependent $\epsilon$-nets on the unit sphere in $\mathbb{R}n$. Second, we extend the weight assignment technique of Chen, Khanna and Nagda [FOCS'20] to the spectral sparsification setting. Surprisingly, the number of spanning trees after the weight assignment can serve as a potential function guiding the reweighting process in the spectral setting.

Citations (19)

Summary

We haven't generated a summary for this paper yet.