Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sneak Attack against Mobile Robotic Networks under Formation Control (2106.02240v1)

Published 4 Jun 2021 in eess.SY and cs.SY

Abstract: The security of mobile robotic networks (MRNs) has been an active research topic in recent years. This paper demonstrates that the observable interaction process of MRNs under formation control will present increasingly severe threats. Specifically, we find that an external attack robot, who has only partial observation over MRNs while not knowing the system dynamics or access, can learn the interaction rules from observations and utilize them to replace a target robot, destroying the cooperation performance of MRNs. We call this novel attack as sneak, which endows the attacker with the intelligence of learning knowledge and is hard to be tackled by traditional defense techniques. The key insight is to separately reveal the internal interaction structure within robots and the external interaction mechanism with the environment, from the coupled state evolution influenced by the model-unknown rules and unobservable part of the MRN. To address this issue, we first provide general interaction process modeling and prove the learnability of the interaction rules. Then, with the learned rules, we design an Evaluate-Cut-Restore (ECR) attack strategy considering the partial interaction structure and geometric pattern. We also establish the sufficient conditions for a successful sneak with maximum control impacts over the MRN. Extensive simulations illustrate the feasibility and effectiveness of the proposed attack.

Summary

We haven't generated a summary for this paper yet.